Overleg:Kwadraat

Laatste reactie: 7 jaar geleden door Bob.v.R in het onderwerp Kwadraatgetal

Misschien een detail, maar er staat "De inverse van het kwadraat is de vierkantswortel."
Op de pagina van de vierkantswortel wordt deze gedefinieerd als de positieve wortel. Vermits kwadrateren geen één-tot-één bewerking is, heeft het de vierkantswortel zoals we ze definiëren ook niet als inverse.
Bij de voorbeelden worden deze twee aangehaald:
32 = 3 × 3 = 9
(-3)2 = -3 × -3 = 9
Echter, beide zouden door de vierkantswortel 3 geven. Misschien dat van de vierkantswortel iets zorgvuldiger noteren of evt weglaten? TD 15 aug 2005 23:48 (CEST)Reageren

Gefixt. – gpvos (overleg) 16 aug 2005 11:35 (CEST)Reageren
Mooi! TD 16 aug 2005 11:37 (CEST)Reageren

Na een discussie over "elk getal is een kwadraat" ontdekte ik de volgende ommissie. In de definitie van kwadraat wordt alleen gesproken over het kwadraat van een getal, maar niet over "een kwadraat is een getal, dat ...", terwijl er wel aan wordt gerefereerd wordt in het artikel. Wilt u dit a.u.b. toevoegen? WW 19 mrt 2008 21:12 (CEST)
Bovenstaande bijdrage is hier op 19 mrt 2008 21:40 geplaatst door 194.171.252.108 .

Kwadraatgetal

bewerken

Waarom is er naast dit artikel een apart artikel met de naam Kwadraatgetal? Bob.v.R (overleg) 8 sep 2017 02:46 (CEST)Reageren

Omdat niet ieder kwadraat een kwadraatgetal is? --bdijkstra (overleg) 8 sep 2017 11:27 (CEST)Reageren
Okay. Bob.v.R (overleg) 8 sep 2017 12:03 (CEST)Reageren
Ik begrijp Bob niet. Op Veelhoeksgetal blijft hij mijn voorbeelden van gecentreerde veelhoeksgetallen weghalen en nu ziet hij niet dat --bdijkstra het verkeerd om zegt. Ieder kwadraat is een kwadraatgetal, maar niet ieder kwadraatgetal is een kwadraat. Voor de duidelijkheid zet ik de voorbeelden er nog maar eens bij. 5 is een gecentreerd kwadraatsgetal, maar geen kwadraat. Dat lees ik af uit de figuur. 25 is het 5e kwadraat. Ieder kwadraat is een in een hoekpunt genest kwadraatsgetal. Het enige dat je kunt zeggen is dat het verschil tussen kwadraat en kwadraatgetal in Kwadraatgetal niet tot uiting komt. ChristiaanPR (overleg) 8 sep 2017 19:28 (CEST)Reageren

Ik denk dat B. Dijkstra hier gelijk heeft. Bijvoorbeeld 6,25 is géén kwadraatgetal. (Op de rest van de beweringen van ChristiaanPR ga ik maar niet in.) Bob.v.R (overleg) 8 sep 2017 21:30 (CEST)Reageren

Terugkeren naar de pagina "Kwadraat".