Aangeschreven cirkel

In de meetkunde is een aangeschreven cirkel van een driehoek een cirkel die één zijde raakt en tevens raakt aan de verlengden van beide andere zijden. Elke driehoek heeft drie aangeschreven cirkels.

Aangeschreven cirkel
De ingeschreven (paars) en drie aangeschreven (blauw) cirkels

Het middelpunt van een aangeschreven cirkel vindt men door het snijden van twee buitenbissectrices van hoeken van de driehoek, en ligt op de binnenbissectrice van de derde hoek.

Middelpunten

bewerken

De middelpunten van de aangeschreven cirkels worden meestal aangeduid met  ,   en  , zodanig dat bijvoorbeeld   op de binnenbissectrice van A ligt. Barycentrische coördinaten zijn

  •  
  •  
  •  

De driehoek   is de antivoetpuntsdriehoek van het middelpunt van de ingeschreven cirkel.

Stralen

bewerken

De stralen van de aangeschreven cirkels worden meestal aangeduid met  ,   en  . Formules voor   zijn:

  •  ,
  •  ,
  •  .

Hierin is R de straal van de omgeschreven cirkel,   de oppervlakte van ABC en s de halve omtrek.

Verbanden met de straal r van de ingeschreven cirkel worden gegeven door:

  •  
  •  
  •  

Zie ook

bewerken