Cykel (wiskunde)

wiskunde

In de groepentheorie, een deelgebied van de wiskunde, is een cykel een permutatie van de elementen van enige verzameling , die de elementen van enige deelverzameling van op een cyclische manier op elkaar afbeeldt. Daarbij blijven alle andere elementen op hun plaats, dat wil zeggen dat zij op zichzelf worden afgebeeld. De verzameling wordt de baan van de cykel genoemd.

Definitie

bewerken

Een permutatie   van een verzameling  , die een bijectie   is, wordt een cykel genoemd, indien de actie op   van de ondergroep, gegenereerd door   precies één baan heeft met meer dan één element. Dit begrip wordt meestal gebruikt wanneer   een eindige verzameling is. Dit aangezien de baan   dan ook eindig is. Laat   enig element van baan   zijn, en zet   voor enige  . Aangezien is aangenomen dat   meer dan één element heeft is  . Als   eindig is, bestaat er een minimaal getal  , waarvoor  . Dan geldt   en is   de permutatie, die wordt gedefinieerd door

 

en is   voor enig element van  . De elementen die niet zijn vastgepind door   kunnen worden afgebeeld als

 .

Een cykel kan in de compacte cykelnotatie   worden geschreven, in deze notatie wordt geen gebruikgemaakt van komma's tussen de elementen, dit om verwarring met een  -tupel te vermijden. De lengte van een cykel is het aantal elementen van haar baan van niet-vaste elementen. Een cykel van lengte   wordt ook wel een  -cykel genoemd.

Basiseigenschappen

bewerken

Een van de fundamentele resultaten voor symmetrische groepen zegt, dat iedere permutatie kan worden uitgedrukt als een product van disjuncte cykels, meer precies: cykels met disjuncte banen. Deze cykels zijn met elkaar commutatief, en de uitdrukking van de permutatie is uniek 'up to' de orde van de cykels, maar merk op dat de cykelnotatie niet uniek is: elk  -cykel kan, afhankelijk van de keuze van   in zijn baan, zelf op   verschillende manieren worden geschreven. De multiset van lengtes van de cykels in deze uitdrukking wordt daarom uniek bepaald door de permutatie, en zowel het teken als de conjugatieklasse van de permutatie worden er in de symmetrische groep door bepaald.

Het aantal  -cykels in de symmetrische groep   wordt voor  , gegeven door de volgende equivalente formules

 

Een  -cykel is het product van   transposities en heeft teken  .