Sign: Dr. F.C. Turner - [USERPAGE|USERTALK] - dd MM yyyy hh:mm (CE[S]T) Commons: Commons
x ¯ − 3 s = {\displaystyle {\bar {x}}-3s=}
μ − 3 σ = {\displaystyle \mu -3\sigma =}
Σ y − n ⋅ Σ x y − Σ x ⋅ Σ y n ⋅ Σ x 2 − ( Σ x ) 2 ⋅ Σ x n {\displaystyle {\Sigma {y}-{n\cdot \Sigma {xy}-\Sigma {x}\cdot \Sigma {y} \over n\cdot \Sigma {x^{2}}-(\Sigma {x})^{2}}\cdot \Sigma {x} \over n}}
− 3 , 5 ⋅ M A D 0 , 6745 + m = {\displaystyle {-3,5\cdot MAD \over 0,6745}+m=} 3 , 5 ⋅ M A D 0 , 6745 + m = {\displaystyle {3,5\cdot MAD \over 0,6745}+m=}
m = {\displaystyle m=}
M A D = m | Σ x − Σ m | = {\displaystyle MAD=m_{|\Sigma {x}-\Sigma {m}|}=}
x m a x = {\displaystyle x_{max}=}
x m i n = {\displaystyle x_{min}=}
Σ x = {\displaystyle \Sigma {x}=}
( Σ x ) 2 = {\displaystyle (\Sigma {x})^{2}=}
Σ y = {\displaystyle \Sigma {y}=}
( Σ y ) 2 = {\displaystyle (\Sigma {y})^{2}=}
Σ x 2 = {\displaystyle \Sigma {x^{2}}=}
Σ y 2 = {\displaystyle \Sigma {y^{2}}=}
Σ x y = {\displaystyle \Sigma {xy}=}
( Σ x y ) 2 = {\displaystyle (\Sigma {xy})^{2}=}
a = n ⋅ Σ x y − Σ x ⋅ Σ y n ⋅ Σ x 2 − ( Σ x ) 2 = {\displaystyle a={n\cdot \Sigma {xy}-\Sigma {x}\cdot \Sigma {y} \over n\cdot \Sigma {x^{2}}-(\Sigma {x})^{2}}=}
b = Σ y − a ⋅ Σ x n = {\displaystyle b={\Sigma {y}-a\cdot \Sigma {x} \over n}=}
R = n ⋅ Σ x y − Σ x ⋅ Σ y ( n ⋅ Σ x 2 − ( Σ x ) 2 ) ⋅ ( n ⋅ Σ y 2 − ( Σ y ) 2 ) = {\displaystyle R={n\cdot \Sigma {xy}-\Sigma {x}\cdot \Sigma {y} \over {\sqrt {(n\cdot \Sigma {x^{2}}-(\Sigma {x})^{2})\cdot (n\cdot \Sigma {y^{2}}-(\Sigma {y})^{2})}}}=}
Σ | x − μ | N = {\displaystyle {\Sigma |x-\mu | \over N}=}
Σ | x − x ¯ | n = {\displaystyle {\Sigma |x-{\bar {x}}| \over n}=}
R 2 = {\displaystyle R^{2}=} 3
x ¯ = μ = {\displaystyle {\bar {x}}=\mu =}
y = m x + b {\displaystyle y=mx+b}
Σ | x − x ¯ | {\displaystyle {\Sigma {|x-{\bar {x}}|}}}
s = {\displaystyle s=}
m i m i n = 0 , 6745 ( y m i n − m e d i a a n ) M A D = {\displaystyle m_{i_{min}}={{0,6745(y_{min}-mediaan)} \over MAD}=}
m i m a x = 0 , 6745 ( y m a x − m e d i a a n ) M A D = {\displaystyle m_{i_{max}}={{0,6745(y_{max}-mediaan)} \over MAD}=}
S E x ¯ = s 2 n = {\displaystyle SE_{\bar {x}}={\sqrt {s^{2} \over n}}=}
S E x ¯ = σ 2 n = {\displaystyle SE_{\bar {x}}={\sqrt {\sigma ^{2} \over n}}=}
Σ ( x − x ¯ ) 2 = {\displaystyle {\Sigma {(x-{\bar {x}}})^{2}}=}
y ¯ = {\displaystyle {\bar {y}}=}
y ^ = {\displaystyle {\hat {y}}=}
y ~ = {\displaystyle {\tilde {y}}=}