Speciale lineaire groep

In de groepentheorie, een tak van de hogere algebra, bestaat de speciale lineaire groep uit de vierkante matrices met determinant 1. Het zijn de volumebehoudende lineaire transformaties.

Definitie

bewerken

Zij K een commutatief lichaam. De speciale lineaire groep in n dimensies over K, genoteerd SL(n,K), bestaat uit de vierkante n×n-matrices met elementen in K waarvan de determinant 1 is. De groepsbewerking is de matrixvermenigvuldiging.

Verantwoording

bewerken

Als een vierkante matrix determinant 1 heeft, dan is hij inverteerbaar. Hieruit volgt dat SL(n,K) een deelverzameling is van de algemene lineaire groep GL(n,K), de inverteerbare vierkante matrices met elementen in K. Bovendien is de determinant van een product van vierkante matrices gelijk aan het product van hun determinanten, zodat de deelverzameling SL(n,K) stabiel blijft onder matrixvermenigvuldiging en onder het nemen van inversen. Ze vormt dus een ondergroep van GL(n,K).

Voorbeeld

bewerken

De reële speciale lineaire groep in twee dimensies   bestaat uit de  -matrices met reële elementen en determinant 1.

 

Vierkante  -matrices kunnen worden opgevat als lineaire transformaties van de n-dimensionale vectorruimte Kn. Bij reële vierkante matrices is de determinant gelijk aan het georiënteerde volume van de getransformeerde eenheidskubus.

De reële speciale lineaire groep is dus de groep der volumebehoudende lineaire transformaties van de n-dimensionale ruimte.

Coördinaten

bewerken

Voor   en   kunnen de elementen van SL(n,K) worden uitgedrukt in reële coördinaten. Technisch zeggen we dat deze groepen Lie-groepen zijn. (met reële dimensie n2-1 resp. 2n2-2).

Eindige groepen

bewerken

Als K een eindig lichaam is met k elementen, dan is SL(n,K) een eindige groep. Zo heeft bijvoorbeeld SL(2,K) steeds k(k+1)(k-1) elementen.

Projectieve speciale lineaire groep

bewerken

De scalaire veelvouden van de eenheidsmatrix met determinant 1 vormen een normaaldeler van SL(n,K). Deze is niet-triviaal als het getal 1 een niet-triviale n-demachtswortel heeft in het lichaam K. Bijvoorbeeld: in de reële getallen heeft 1 twee verschillende vierkantswortels, namelijk 1 zelf en -1. De groep   heeft dus een normaaldeler die bestaat uit de twee matrices

 

De bijhorende factorgroep heet projectieve speciale lineaire groep in n dimensies over K. Men noteert hem gewoonlijk als PSL(n,K).

De Franse wiskundige Serge Lang publiceerde een boek met de titel   als verwijzing naar zijn eigen initialen.