Stelling van Abel

In de complexe analyse is de stelling van Abel een stelling voor machtreeksen, waarin de limiet van de machtreeks wordt gerelateerd aan de som van de coëfficiënten. De stelling is genoemd naar de Noorse wiskundige Niels Henrik Abel.

Stelling

bewerken

Zij   een rij complexe getallen zodat de reeks

 

convergeert, dan geldt voor de machtreeks[1][2][3]

 ,

dat

 ,

Toepassingen

bewerken

Het nut van de stelling bestaat erin om limieten van machtreeksen te berekenen, bijvoorbeeld voor een Galton–Watson proces.

Voorbeeld

Door termgewijze integratie van de uniform convergente meetkundige reeks

 

volgt voor  :

 

of

 

De machtreeks

 

is dus convergent voor  , zodat volgens de stelling van Abel:

 

Omgekeerde stelling

bewerken

De omgekeerde stelling is niet zonder meer waar, maar de Stelling van Tauber is een soort omgekeerde stelling onder bepaalde voorwaarden. Dit is later verfijnd door Godfrey Harold Hardy en John Littlewood. Dergelijke omgekeerde stellingen zijn nuttig om stellingen over priemgetallen te bewijzen.

Zie ook

bewerken